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Abstract
We address the question of radiation emission from mirrors following pre-
scribed relativistic trajectories. The trajectories considered are asymptotically
inertial: the mirror starts from rest and eventually reverts to motion at uniform
velocity. This enables us to provide a description in terms of in and out states.
We calculate exactly the Bogolubov α and β coefficients for a specific form
of the trajectory, and stress the analytic properties of the amplitudes and the
constraints imposed by unitarity. A formalism for the description of emission
of radiation from a dispersive mirror is presented.

PACS numbers: 12.20.−m, 03.70.+k, 04.62.+v

1. Introduction

The question of emission of radiation from imperfect mirrors has received substantial attention
in the last ten years. The present work is influenced by Barton and Eberlein (1993) where
a Hamiltonian treatment of radiation from a dielectric mirror is presented, by Jaeckel and
Reynaud (1993) and Barton and Calogeracos (1995) where a dispersive mirror is treated, and
by Lambrecht et al (1996), Law (1995) and Schützhold et al (1998) where radiation from
vibrating cavities is considered. The formalism has been exploited to study decoherence; see
Maia Neto and Dalvit (2000). There are two common threads in the above works: (i) the
treatments follow the Hamiltonian formulation of quantum field theories, (ii) the calculations
are nonrelativistic (note however that the model presented in Barton and Calogeracos (1995)
is manifestly covariant). This situation has to be contrasted with the study in the 1970s of
radiation from relativistic perfect mirrors following prescribed trajectories (Davies and Fulling
(1977) being one of the important early papers on the subject). In this connection we should
note that (a) perfect mirrors have not yet been amenable to a Hamiltonian treatment and (b) the
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Figure 1. Asymptotically inertial trajectory starting from rest at O, accelerating from O to P and
reverting to uniform acceleration at P.

treatment of perfect mirrors has traditionally focused on the relation to black hole radiation.
As a result of (b) the trajectories considered were characterized by acceleration nonvanishing
in the t → ∞ limit. We examine the latter problem in a companion paper (Calogeracos 2002),
hereafter referred to as II. Our objective here is to treat radiation from mirrors moving along
prescribed relativistic asymptotically inertial trajectories. The approach we adopt in this paper
may be of use in the calculation of the radiation emitted by the interface between two media
when its speed approaches a characteristic speed of the system (cf the motion of the A–B
interface in He3).

The present work, with the exception of appendix B, is devoted to perfect mirrors. The
paper is organized as follows. In section 2, the normal modes for a one-sided perfect mirror
are presented in the manner of Fulling and Davies (1976), Davies and Fulling (1977) and
Birrell and Davies (1982). A physical interpretation of the modes in terms of the lab frame
is given. In section 3, we consider a one-sided mirror that starts from rest, accelerates along
the trajectory z = − ln(cosh t) until it reaches a spacetime point P where it has some arbitrary
velocity βP , and then reverts to motion at uniform velocity (figure 1). The particular trajectory
is of interest because it gives rise to a thermal spectrum if the acceleration is to go on forever.
We present an exact calculation of β(ω,ω′) in terms of hypergeometric functions, and discuss
the analytic properties of the α(ω,ω′) and β(ω,ω′) amplitudes and the constraints imposed by
unitarity. There are several advantages in considering asymptotically inertial trajectories: (i)
acceleration continuing for an infinite time implies mathematical singularities and also entails
physical pathologies associated, for example, with the infinite energy that has to be imparted
to the mirror. Note that point P may lie as close to the null line v = ln 2 as desired, or in other
words the mirror’s final speed may be close to the speed of light. (ii) The mirror’s rest frame
eventually (after acceleration stops) becomes an inertial frame and the standard description in
terms of in and out states is possible. One may choose either the lab frame or the mirror’s rest
frame to describe the photons produced. (iii) One avoids statements about photons produced
while the mirror is accelerated; rather one makes unambiguous statements pertaining to times
t = ±∞ when acceleration vanishes. We show, in general, that for an asymptotically inertial
trajectory with the velocity being continuous everywhere the amplitude squared |β(ω,ω′)|2
goes as (ω′)−5 for large ω′. This is in contrast to a trajectory accelerated forever where
|β(ω,ω′)|2 goes as 1/ω′ for large ω′. This radical difference is due to a subtle cancellation
between two contributions, one arising from the initial and the other from the final asymptotic
part of the trajectory; see II for details. In appendix A we give some mathematical details on
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Figure 2. The spacetime coordinates t, z of a point on the trajectory as functions of u.

the trajectory. In appendix B we treat dispersive mirrors adopting the manifestly covariant
approach of Barton and Calogeracos (1995). The dispersivity of the mirror is controlled by a
parameter γ . We give the in and out modes for a dispersive mirror and outline how the method
of section 3 may be applied to calculate the spectrum of the radiation emitted.

2. The normal modes

2.1. The standard treatment

Let us introduce the coordinates

u = t − z v = t + z. (1)

The massless Klein–Gordon equation reads

∂2φ

∂u∂v
= 0. (2)

Hence any function that depends only on u or v (or the sum of two such functions) is a solution
of (2). Let z = g(t) be the mirror’s trajectory. We take everything to exist to the right of the
mirror. The objective is to find a set of modes satisfying (2) and the boundary condition

φ(t, g(t)) = 0. (3)

One set of modes (Birrell and Davies (1982), equation (4.43)) is

ϕω(u, v) = i

2
√
πω

(exp(−iωv) − exp(−iωp(u))). (4)

We will always consider (4) and (21) below as functions of the lab coordinates (t, z)

through (1). The determination of the function p(u) goes as follows. For a certain value of u
consider the point where the line u = constant cuts the mirror’s trajectory (figure 2). Let t (u)
be the time coordinate of that point. Define

p(u) = 2t (u) − u. (5)

Since by (1)

t (u) − u = g(t (u)) (6)
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it follows that

p(u) = t (u) + g(t (u)). (7)

From the second part of (1) it follows that

v = p(u). (8)

It is clear from (8) thatϕω(u, v) vanishes on the trajectory. Equation (8) describes the trajectory
in terms of u, v variables. Conversely

u = f (v) (9)

where the function f is the inverse of p. The graphical interpretation is that an outgoing
(rightward) light ray corresponding to a certain u cuts the trajectory at a point where the
incoming (leftward) light ray is labelled by v = p(u). From definitions (1) and (8) it follows
that for points (t, z) on the trajectory

t + z = p(t − z). (10)

The following observation will be of use later on. Consider motion along the trajectory −g(t),
i.e. the reflection of the trajectory g(t) with respect to the origin. It is clear from (10) that the
equations for the two trajectories are related via the correspondence u � v, f � p.

We introduce the velocity

β = dg

dt
.

Differentiating (10) with respect to time we obtain

p′(u) = 1 + β(u)

1 − β(u)
(11)

where β stands for the instantaneous velocity (not to be confused with the amplitude β(ω,ω′);
the latter will always be a function of two variables). From the fact that f and p are inverse it
follows that

f ′(v) = 1 − β(v)

1 + β(v)
. (12)

For motion at uniform velocity B, the above expression yields

f0(v) = C +
1 − B

1 + B
v (13)

where the constant C is related to the initial condition. From (11) and (12) we may readily
obtain β along the trajectory as a function of either u or v:

β(u) = p′(u) − 1

p′(u) + 1
(14)

β(v) = 1 − f ′(v)
1 + f ′(v)

. (15)

In the case of the accelerating trajectory g(t) = − ln(cosh t) considered in section 3 the
function f (v) is denoted by facc and given by (78) (with κ = 1):

facc(v) = − ln(2 − ev). (16)

The quantity dβ/du will turn up in the treatment of dispersive mirrors. We write

dβ

du
= dβ

dt

dt

du
(17)
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and from the definition of u we get

du

dt
= 1 − β. (18)

Combination of (17) and (18) yields

dβ

du
= a

1 − β
(19)

where a stands for the acceleration dβ/dt . Similarly we obtain

dβ

dv
= a

1 + β
. (20)

Note that another set of modes satisfying the boundary condition is immediately obtained
from (4)

ϕ̄ω(u, v) = i

2
√
πω

(exp(−iωf (v)) − exp(−iωu)). (21)

We quote the time derivative for future reference

∂ϕ̄ω(u, v)

∂t
= ω

2
√
πω

(f ′(v) exp(−iωf (v)) − exp(−iωu)). (22)

The modes ϕω(u, v) of (4) describe waves incident from the right as is clear from the sign
of the exponential in the first term; the second term represents the reflected part which has a
rather complicated behaviour depending on the motion of the mirror. These modes constitute
the in space and should obviously be unoccupied before acceleration starts,

ai|0in〉 = 0

according to the following section. Similarly, ϕ̄ω(u, v) describe the modes travelling to
the right (emitted by the mirror) as can be seen from the exponential of the second term.
Correspondingly the first term is complicated. These modes define the out space and

āi|0out〉 = 0.

The state |0out〉 corresponds to the state where nothing is produced by the mirror. The
two representations are connected by the Bogolubov transformation to be reviewed in the
following section. The fact that the in and out vacua are not identical lies at the origin of
particle production.

2.2. An illustration

It is instructive to consider motion at uniform velocity

z = Bt. (23)

The function f is given in this case by (13) with C = 0 (since the condition f (0) = 0 is valid
for the trajectory (23))

f (v) = v
1 − B

1 + B
. (24)

Thus mode (4) reads

ϕω(u, v) = i

2
√
πω

(
exp(−iωv) − exp

(
−iωu

1 + B

1 − B

))
. (25)

On the other hand, in the case of uniform velocity the modes may be obtained by simply
boosting the modes pertaining to the stationary mirror. We denote the coordinates in the frame
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of the mirror by (t ′, z′) and by �′ and K ′ the energy and momentum, respectively, of a mode
in the stated frame (of course �′ = |K ′| but we keep them distinct for the moment for the sake
of clarity). The mode satisfying the boundary condition at the position of the mirror, taken to
be at the origin z′ = 0, reads (modulo a normalization factor)

exp(−i�′t ′ − iK ′z′) − exp(−i�′t ′ + iK ′z′) (26)

where the first term above refers to the incident and the second to the reflected wave. We
express the comoving coordinates in terms of the lab frame coordinates via

z′ = z − Bt√
1 − B2

t ′ = t − Bz√
1 − B2

and substitute in (26) to get the mode in the form

exp

(
−i

�′ − K ′B√
1 − B2

t + i
−K ′ + �′B√

1 − B2
z

)
− exp

(
−i

�′ + K ′B√
1 − B2

t + i
K ′ + �′B√

1 − B2
z

)
.

Using �′ = |K ′| we rewrite the above as

exp

(
−i

�′(1 − B)√
1 − B2

(t + z)

)
− exp

(
−i

�′(1 + B)√
1 − B2

(t − z)

)
. (27)

Observe that expression (27) is identical to (21) if we set

ω = �′(1 + B)√
1 − B2

= �′
√

1 + B

1 − B
(28)

and use (24). The second term in (27) makes it clear that the ω appearing in (21) is the photon
energy in the lab frame.

3. Radiation from a perfect mirror accelerated for a finite time

3.1. The Bogolubov transformation

In this subsection, we fix conventions and notation following Birrell and Davies (1982),
section 3.2, write down the general expression for the Bogolubov amplitude β(ω,ω′) to be
evaluated, and study its asymptotic behaviour for large ω′. The creation and annihilation
operators referring to the two sets ϕ, ϕ̄ are connected by

āi =
∑
j

(αjiaj + β∗
jia

†
j ). (29)

Using (29) and its Hermitian conjugate we may immediately verify that the expectation value
of the number of excitations of the mode (i) in the |0in〉 vacuum is given by

〈0in|N̄ i |0in〉 =
∑
j

|βji |2. (30)

In our notation the matrix βji is given by the overlap

β(ω,ω′) = −〈ϕ̄ω, ϕ
∗
ω′ 〉 (31)

defined as (see Birrell and Davies (1982), equations (2.9) and (3.36))

β(ω,ω′) = −i
∫ ∞

0
dz ϕω′(z, 0)

∂

∂t
ϕ̄ω(z, 0) + i

∫ ∞

0
dz

(
∂

∂t
ϕω′(z, 0)

)
ϕ̄ω(z, 0). (32)

The integration in (32) can be over any spacelike hypersurface. In all cases examined here the
mirror is at rest for t � 0 and the choice t = 0 for the hypersurface is thus convenient. Note
the technical simplification that such a trajectory offers. The in modes evaluated at t = 0
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involve the function p(−z) (i.e. p evaluated at negative values of the argument), and are thus
given by the simple expression (25) evaluated at B = 0. The ϕ̄ modes are given by (21) with
f depending on the trajectory. Relation (32 ) is rewritten more explicitly in the form (f is a
function of z and its functional form is determined by (12) and the initial condition)

β(ω,ω′) = −i
∫ ∞

0
dz

i

2
√
πω′ {e

−iω′z − eiω′z} ω

2
√
πω

{f ′e−iωf − eiωz}
(33)

+ i
∫ ∞

0
dz

ω′

2
√
πω′ {e

−iω′z − eiω′z} i

2
√
πω

{e−iωf − eiωz}.

The above expression may be rearranged in the form

β(ω,ω′) = iω′

2π
√
ωω′

∫ ∞

0
dz sin(ω′z){e−iωf − eiωz}

+
iω

2π
√
ωω′

∫ ∞

0
dz sin(ω′z){eiωz − f ′e−iωf }. (34)

Note that both (33) and (34) are direct descendants of (32). Note also the presence of two
f -independent (i.e. trajectory-independent) terms whose origin is purely kinematic. The
amplitude β(ω,ω′) will be evaluated for a specific trajectory in the next subsection.

In this section we confine ourselves to trajectories that in the infinite past and infinite future
describe motion at uniform velocity. In that case both in and out solutions form complete sets
of states, and the standard manipulations with creation and annihilation operators go through.
One problem that arises in connection with completeness is the following. The wave equation
is solved by specifying Cauchy data along the (spacelike) line t = 0, z > 0 and the Dirichlet
boundary condition along the (timelike) curve that corresponds to the trajectory of the mirror.
In the case of an asymptotically inertial trajectory the two curves along which the boundary
conditions are specified cut the u = t−z, v = t +z characteristics of the wave equation (which
is the normal case). Things change if the mirror starts from rest at t = 0, z = 0 and follows
the trajectory (studied in the next subsection) g(t) = − ln(cosh t) forever, thus asymptotically
approaching the null line v = − ln 2. Then the trajectory does not cut all the characteristics
of the wave equation (it leaves out those of v = const lying above the null line v = ln 2).
Hence the boundary conditions allow for an arbitrary solution ϕ(v)θ(v − ln 2), which should
be added to the usual expansion of the field in terms of the out modes ϕ̄ and the out creation
and annihilation operators ā†

i , āi ; see Nikishov and Ritus (1995).
The number density per unit frequency ω of the emitted photons is obtained after we

integrate the modulus squared of (34) over ω′ (the integration over ω′ is the analogue of the
summation over j in (30)):

dN(ω)

dω
=

∫ ∞

0
dω′ |β(ω,ω′)|2 e−α(ω+ω′). (35)

The small convergence factor α has been introduced in anticipation of an ultraviolet divergence
in (35). The fact that quantities such as the total number of particles produced or the total
emitted energy suffer from such divergences is also encountered in nonrelativistic calculations
in the case of dispersive mirrors (see, for example, Barton and Calogeracos (1995)). The total
emitted energy is given by

E =
∫ ∞

0
dωω

∫ ∞

0
dω′ |β(ω,ω′)|2 e−α(ω+ω′). (36)
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The behaviour of the integrand in (35) for large ω′ is crucial. As mentioned in the
introduction we are interested in asymptotically inertial trajectories defined as follows. The
mirror is stationary at O for t < 0, follows an accelerating trajectory until some spacetime
point P, and then continues at uniform velocity βP . We take the velocity to be continuous
throughout (points O and P included). Such a trajectory is shown in figure 1 and will be
thoroughly examined in the next subsection. Let r be the z intercept of the null line passing
through P with slope −1. Walker (1985) has asserted that in the case of a trajectory with
continuous velocity the square |β(ω,ω′)|2 goes as (ω′)−5. We present a proof based on the
technique of Lighthill (1958), ch 4. We introduce the two integrals

J1(ω
′) ≡

∫ ∞

0
dz e−iω′z {

e−iωf (z) − eiωz
}

(37)

J2(ω
′) ≡

∫ ∞

0
dz e−iω′z {

f ′(z) e−iωf (z) − eiωz
}
. (38)

Then the first and second integrals appearing in (34) are proportional to

J1(−ω′) − J1(ω
′) (39)

and

J2(−ω′) − J2(ω
′) (40)

respectively. We now examine the asymptotic estimates for large ω′ of J1(ω
′) and J2(ω

′).
We define the functions

$A(z) ≡ exp(−iωfin(z)) − exp(iωz)

$B(z) ≡ exp(−iωfacc(z)) − exp(iωz) (41)

$C(z) ≡ exp(−iωf0(z)) − exp(iωz)

where the functions fin, facc, f0 are defined by (13) for B = 0, C = 0, (16) and (13) for
velocity equal to βP , respectively. In the latter case C is fixed by the requirement that
the velocity be continuous at P (see (49)). To conform with Lighthill’s notation we define
ω ≡ 2πy. Then J1(ω

′) is the Fourier transform G(y) of

$(z) ≡ $A(z)H(−z) + $B(z)H(z) + [$C(z) − $B(z) − $A(z)] H(z − r) (42)

where H is the Heaviside unit function. The singular points of $(z) are z = 0 and z = r .
Clearly, the three functions $A(z),$B(z),$C(z) correspond to the three stages of a stationary
mirror, accelerating mirror and mirror moving at uniform velocity, respectively. Observe that
the general connection between the velocity β and the function f ′ is given by ( 12) and that the
velocity is continuous everywhere along the trajectory considered whereas the acceleration
has different (but finite) left and right derivatives at each of the two singular points. Thus β ′′

(the second time derivative of the velocity) has a finite jump at each of the two singular points
and hence is absolutely integrable everywhere. To treat the first singular point, let us define
the function

F1(z) =
[
$A(0) + z$ ′

A(0) +
z2

2!
$ ′′

A(0) +
z3

3!
$ ′′′

A (0)

]
H(−z)

+

[
$B(0) + z$ ′

B(0) +
z2

2!
$ ′′

B(0) +
z3

3!
$ ′′′

A (0)

]
H(z). (43)
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According to what was said above, the quantity $ ′′′
A (0) − $ ′′′

B (0) is nonvanishing but finite.
Hence the function $(z)− F1(z) has absolutely integrable third derivative at z = 0. We treat
the second singular point z = r by a similar method, defining the function

F2(z) =
[
$B(r) + (r − z)$ ′

B(r) +
(r − z)2

2!
$ ′′

B(r) +
(r − z)3

3!
$ ′′′

B (r)

]
H(r − z)

+

[
$C(r) + (z − r)$ ′

C(r) +
(z − r)2

2!
$ ′′

C(0) +
(z − r)3

3!
$ ′′′

C (0)

]
H(z − r).

(44)

As before, the quantity $ ′′′
C (r) − $ ′′′

B (r) is nonvanishing but finite. Finally, observe that the
function $ ′′′(z) is well behaved at infinity in the sense of Lighthill’s (1958) definition 20,
p 49. Then according to Lighthill’s theorem 19, p 52, the Fourier transform G(y) of $(z)

takes the form
G(y) = G1(y) + G2(y) + o(|y|−3) (45)

whereG1(y),G2(y) are the Fourier transforms of F1(z), F2(z). According to Lighthill’s table,
p 43, the functions G1(y),G2(y) go asymptotically as y−4. Hence overall G(y) ≈ o(|y|−3).
Returning to (37) we observe that J1(−ω′) goes as (ω′)−3 and so does the difference (39).
Regarding integral (38) we may repeat the above process almost verbatim. The one difference
is that this integral involves f ′, thus in the previous argument one has to substitute ‘second
derivative’ for ‘third derivative’ and accordingly keep terms of second order rather than third
in (43) and (44). Hence the second integral goes as (ω′)−2. Noting the prefactors in (34) and
especially the fact that the first integral is multiplied by one power of ω′ we deduce that overall
|β(ω,ω′)|2 indeed goes as (ω′)−5. It is shown in section 3 of II that the above arguments
cannot be applied in the case of a mirror accelerating forever and that in that case |β(ω,ω′)|2
behaves as 1/ω′.

3.2. The Bogolubov amplitudes for a mirror eventually reverting to uniform velocity

We remind the reader that the type of asymptotically inertial trajectory we are interested in
is defined after equation (36) (see figure 1). The part of the trajectory between O and P is
given by

z = g(t) = − ln(cosh t). (46)

The velocity is continuous at O and P whereas of course the acceleration a = dβ/dt is not.
The trajectory equation (46) is a special case of z = − 1

κ
ln(cosh(κt)). The energy scale is

fixed in (46) by setting κ = 1. Our interest in the trajectory (46) stems from the fact that if
(and only if) the acceleration is allowed to go on forever then the mirror gives rise to a thermal
spectrum of radiation. For details see II and references therein. Note that for large t (46) has
the asymptotic form

g(t) ≈ −t − e−2t + ln 2. (47)

The advantages of an asymptotically inertial trajectory have been mentioned earlier on.
The quantity r was defined in the previous subsection as the z intercept of the null line

passing through P with slope −1. As can be seen from the equation of the trajectory v = p(u)

with p(u) given by (76) the possible values of r range from 0 to ln 2 (the latter asymptotically
when u → ∞). The quantities r and βP are connected via (8)

βP = 1 − er .

When it comes to the integrations appearing in the amplitude (33), we use for f (z) the
expression facc(z) given by (16) in the range 0 � z � r and f0(z) given by (13) in the range
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r � z � ∞. Some of the integrals involved are conveniently expressed in terms of the function
ζ and its complex conjugate ζ ∗ defined in Heitler (1954), pp 66–71:

ζ(x) ≡ −i
∫ ∞

0
eiκx dκ = P

1

x
− iπδ(x). (48)

The constant C in (13) is determined by continuity of f at the point P

facc(z) = f0(z)

or

C +
1 − βP

1 + βP

r = − ln(2 − er ) (49)

where we used (78) for the right-hand side of (49).
Amplitude (34) is split into three contributions

β(ω,ω′) ≡ βI (ω, ω′) + βII (ω, ω′) + βIII (ω, ω′) (50)

originating as follows. The βIII (ω, ω′) stands for the contribution of the two terms in (34)
that are f -independent, is always there for a mirror starting from rest (or initially moves
at uniform velocity) and does not depend on the subsequent form of the trajectory. The
βI (ω, ω′) contribution results from the accelerating part of the trajectory and corresponds to
the 0 < z < r integration range in (34). Its evaluation will prove mathematically somewhat
involved. The βII (ω, ω′) amplitude results from the z > r part of the integration range
in (34), is readily evaluated and is specific to a mirror that reverts to the state of uniform
motion. Thus

βI (ω, ω′) = − i

2π
√
ω′ω

∫ r

0
dz sin(ω′z){ωf ′

acc(z) − ω′} e−iωfacc(z) (51)

βII (ω, ω′) = 1

4π i
√
ωω′

(
ω

1 − βP

1 + βP

− ω′
)

exp

[
i

(
ω

1 − βP

1 + βP

+ ω′
)
r

]

× ζ

(
ω

1 − βP

1 + βP

+ ω′
)

e−iωC − 1

4π i
√
ωω′ exp

[
i

(
−ω′ + ω

1 − βP

1 + βP

)
r

]
e−iωC

(52)

βIII (ω, ω′) = 1

4π i
√
ωω′ − 1

4π i
√
ωω′ (ω − ω′)ζ(ω + ω′). (53)

Note that the arguments of the ζ functions in (52 ) and (53) never vanish. Thus as far as the
evaluation of β(ω,ω′) is concerned we observe that it is only the first term in (48) that is
operative, and that β(ω,ω′) does not have any δ-type singularities. However, the forms (52)
and (53) are useful because we can obtain the other Bogolubov amplitude α(ω,ω′) via the
substitution ω → −ω in accordance with (72) below. The α(ω,ω′) is of course expected to
have δ-type singularities, and in fact reduces to just δ(ω − ω′) in the trivial case when the in
and out modes coincide.

We turn our attention to βI (ω, ω′). We integrate (51) by parts to get

βI (ω, ω′) = 1

2π
√
ωω′ sin(ω′r) e−iωfacc(r) − 1

2π

√
ω′

ω

∫ r

0
dze−iωfacc(z)−iω′z (54)

where the first term is the upper endpoint contribution; the lower endpoint contribution
vanishes. We rewrite (54) using (16) for facc as

βI (ω, ω′) = 1

2π
√
ωω′ sin(ω′r)(2 − er )iω − 1

2π

√
ω′

ω

∫ r

0
dz (2 − ez)iω e−iω′z. (55)
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We make the change of variable

z = ln 2 − ρ (56)

and rewrite (55) in the form

βI (ω, ω′) = 1

2π
√
ωω′ sin(ω′r)(2 − er )iω − 2i(ω−ω′)

2π

√
ω′

ω

∫ ln 2

ln 2−r

dρ (1 − e−ρ)iω eiω′ρ . (57)

We isolate the integral occurring in (57) and rewrite it with arbitrary limits:

I ≡
∫ l2

l1

dρ(1 − e−ρ)iω eiω′ρ. (58)

We use the binomial expansion in (58) and integrate term by term to get

I =
[
−eiω′x

∞∑
n=0

(−iω)n

n!

(e−x)n

(n − iω′)

]x=l2

x=l1

(59)

where (·)n is the Pochhammer symbol. We write

1

(n − iω′)
= (−iω′)n

(−iω′ + 1)n
(60)

and then the sum in (59) is identified as the F hypergeometric function:

I =
[

eiω′x

iω′ F(−iω,−iω′; −iω′ + 1; e−x)

]x=l2

x=l1

. (61)

Note that according to item 15.1.1 (b) of Abramowitz and Stegun (1972) the series expansion
of the F(a, b, c, z) hypergeometric converges absolutely if Re(c − a − b) = 1 > 0 and
this inequality does hold for the hypergeometric occurring in (61). We reinstate the limits
l1 = ln 2 − r, l = ln 2 appearing in (57) and obtain for the βI (ω, ω′) amplitude the expression

βI (ω, ω′) = 1

2π
√
ωω′ sin(ω′r)(2 − er )iω − 1

2π i

2iω

√
ωω′

{
F

(
−iω,−iω′; −iω′ + 1; 1

2

)

+F

(
−iω,−iω′; −iω′ + 1; er

2

)
e−iω′r

}
. (62)

It is interesting to observe that the value r = ln 2 corresponding to the asymptote falls exactly
on the radius of convergence of the series as one can see from the argument of the second
hypergeometric appearing above. (Note that according to (80) er = 1 − βP , recall that βP is
the velocity at P, and that asymptotically β → −1.)

An alternative way to evaluate (58) is to rewrite the integral occurring in (57)

I =
∫ ln 2

ln 2−r

dρ (1 − e−ρ)iω eiω′ρ−αρ (63)

introducing a small positive constant α to ensure convergence. We change variable to

t = e−ρ .

Then (63) reads

I =
∫ er /2

1/2
dt t−1−iω′+α(1 − t)iω =

∫ er /2

0
dt t−1−iω′+α(1 − t)iω −

∫ 1/2

0
dt t−1−iω′+α(1 − t)iω.

If we make use of the integral representation 15.3.1 of Abramowitz and Stegun (1972) for the
hypergeometric function and take the α → 0 limit, we get result (61) for I.
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Relation (62) provides the final result for βI (ω, ω′). However, for a numerical evaluation
(via MAPLE for example) of the second hypergeometric

F

(
−iω,−iω′; −iω′ + 1; er

2

)
(64)

occurring in (62) and if the point P is near the asymptote (i.e. er/2 � 1) one can accelerate
the convergence through the use of the linear transformation formula 15.3.6 of Abramowitz
and Stegun (1972)

F(a, b; c; z) = F(a, b; a + b − c + 1; 1 − z)
5(c)5(c − a − b)

5(c − a)5(c − b)

+F(c − a, c − b; c − a − b + 1; 1 − z)(1 − z)c−a−b 5(c)5(a + b − c)

5(a)5(b)
.

(65)

Using our a, b, c the first hypergeometric in (65) reads F(−iω,−iω′; −iω; 1 − er/2). We
expand it in the standard hypergeometric series and for this particular set of parameters the
series reduces to the simple binomial expansion and get

F(−iω,−iω′; −iω; 1 − er /2) =
(

er

2

)ω′

.

We may thus rewrite the amplitude (62)

βI (ω, ω′) = 1

2π
√
ωω′ sin(ω′r)(2 − er )iω − 1

2π i

2iω

√
ωω′

{
F

(
−iω,−iω′; −iω′ + 1; 1

2

)

+
5(−iω′ + 1)5(iω + 1)

5(1 − iω′ + iω)

(
er

2

)ω′

e−iω′r

+F

(
− iω′ + 1 + iω, 1; iω + 2; 1 − er

2

)
5(−iω′ + 1)5(−iω − 1)

5(−iω′)5(−iω)

×
(

1 − er

2

)1+iω

e−iω′r

}
. (66)

To summarize, the advantage of the above form over (62) lies in the fact that for a point P
near the asymptotic line the arguments of the hypergeometrics are far from unity (the radius
of convergence). In conclusion the sum of (52), (53) and (66) is the exact answer for the
β(ω,ω′) amplitude for the trajectory in question.

3.3. On the Bogolubov coefficients

The Bogolubov α coefficients appearing in (29) are given by the analogue of (31),

α(ω,ω′) = 〈ϕ̄ω, ϕω′ 〉 (67)

or explicitly by

α(ω,ω′) = i
∫ ∞

0
dz ϕω′(z, 0)

∂

∂t
ϕ̄∗
ω(z, 0) − i

∫ ∞

0
dz

(
∂

∂t
ϕω′(z, 0)

)
ϕ̄∗
ω(z, 0). (68)

Recall also the unitarity condition (3.39) of Birrell and Davies (1982),∫ ∞

0
dω̃ (α(ω̃, ω1)α

∗(ω̃, ω2) − β(ω̃, ω1)β
∗(ω̃, ω2)) = δ(ω1 − ω2) (69)
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and its partner ∫ ∞

0
dω̃ (α(ω1, ω̃)α∗(ω2, ω̃) − β(ω1, ω̃)β∗(ω2, ω̃)) = δ(ω1 − ω2). (70)

Relations (69) and (70) above are direct consequences of the fact that the sets ϕ̄ω and ϕω′ ,
respectively, are orthonormal and complete. They also guarantee that the operators aj , a

†
j

and āi, ā
†
i obey the standard equal time commutation relations that creation and annihilation

operators do.
We find it convenient to isolate the square roots in (34) and introduce quantities

A(ω,ω′), B(ω,ω′) that are analytic functions of the frequencies (without the branch cuts
attendant to square roots) via

α(ω,ω′) = A(ω,ω′)√
ωω′ β(ω,ω′) = B(ω,ω′)√

ωω′ . (71)

The quantityB(ω,ω′) is read off (33) (andA(ω,ω′) from the corresponding expression for
α(ω,ω′)). From the definitions (31) and (67) of the Bogolubov coefficients, the explicit form
(33) of the overlap integral and expression (22) for the field derivative one can immediately
deduce that

B∗(ω, ω′) = A(−ω,ω′) A∗(ω, ω′) = B(−ω,ω′). (72)

4. Conclusions

We considered a perfect mirror starting from rest and accelerating along the trajectory
g(t) = − ln(cosh t) until it reaches a speed arbitrarily close to c and then continuing at
uniform velocity. We presented an exact evaluation of the Bogolubov amplitude β(ω,ω′) and
showed that |β(ω,ω′)|2 goes as (ω′)−5, this being a result of the velocity staying continuous
throughout the trajectory and of the fact that the trajectory is asymptotically inertial. We stress
that the problem examined here is not the problem studied in Fulling and Davies (1976) and
Davies and Fulling (1977) where the mirror accelerates along g(t) = − ln(cosh t) ad infinitum.
Observe that the β(ω,ω′) amplitude given in Davies and Fulling (1977) cannot be obtained as
the limit r → ln 2 of the amplitude evaluated in this paper. This is immediately demonstrated
by the different behaviour for large ω′ (in Davies and Fulling (1977) the modulus of the
amplitude squared |β(ω,ω′)|2 goes asymptotically as 1/ω′). There is thus no question of the
thermal spectrum arising in the case of an asymptotically inertial trajectory, regardless of how
close to the speed of light the final velocity lies. The mirror trajectory g(t) = − ln(cosh t)

is of interest as a model of black hole collapse. However, a realistic mirror (or any other
interface) is not expected to have its velocity forever increasing. The results of this paper
can thus serve as a guide to what one should expect in the realistic case. In appendix B we
construct the normal modes for a double-faced dispersive mirror accelerating to relativistic
velocities. The formalism can then be applied in the calculation of the Bogolubov amplitudes
in the dispersive case. This may be of relevance to the calculation of quasiparticle emission
from an accelerating He3 A–B interface.
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Appendix A. The trajectory z = − 1
κ

ln(cosh κt)

A spacetime point is labelled by two coordinates (u, v) and the trajectory is specified by the
function u = f (v) or equally well by its inverse v = p(u). From the first of (1) and the
equation of the trajectory, we get after some trivial algebra

t = 1

2κ
ln(2eκu − 1). (73)

The velocity is

β(t) = dz

dt
= − tanh κt

and √
1 − β2 = 1

cosh κt
.

The acceleration is

a = dβ

dt
= − κ

cosh2 κt
(74)

and the proper acceleration is

α = a(1 − β2)−3/2 = −κ cosh κt. (75)

Equations (6) and (73) determine p(u):

p(u) = 1

κ
ln(2eκu − 1) − u. (76)

We also quote the derivative

p′(u) = 1

2eκu − 1
. (77)

The inverse to p(u) is

f (v) = − 1

κ
ln(2 − eκv). (78)

Relations (76) and (78) are valid throughout the accelerated trajectory. Obviously the trajectory
asymptotically approaches the null line l1 (for κ = 1) (figure 3). Null lines lying above it (such
as l2) never meet the trajectory. This is reflected in the fact that f is not real for v � (ln 2)/κ .

To determine the velocity we use (14) to obtain

β(u) = e−κu − 1 (79)

(approaching −1 as expected when v → ln 2
κ

from the left). From (15) we determine the
velocity as a function of v

β(v) = 1 − eκv. (80)
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ln2

l1 l2

Figure 3. The asymptote to the trajectory g(t) = − ln(cosh t) and a null line lying above it.

Appendix B. Radiation from a dispersive mirror

We shall repeat the construction of section 2 in the case of a dispersive mirror. We adopt the
model of Barton and Calogeracos (1995) and Calogeracos and Barton (1995). The model is
described by the covariant action

I =
∫

dt

{∫ ξ−

−∞
+

∫ +∞

ξ+

}
dz

{
1

2
gµν∂µ∂ν9

}
− γ

∫
dτ92(ξ) − M

∫
dτ. (81)

The constant γ controls the dispersivity of the mirror. The mirror follows a prescribed
trajectory. The statement following equation (2) remains true in the case of a dispersive
mirror. Any linear combination of functions depending on u or v separately is a solution of
(2). Outgoing modes will be denoted by an overbar (as in section 2) and incoming modes
without an overbar. Indices (+) and (−) correspond to the space argument of 9 being to the
right and to the left of the mirror respectively. Note that eventually the expressions for the
modes will be substituted in (32). Since we evaluate the overlap integral at t = 0, the in modes
to be used coincide with the usual modes for a stationary mirror as exhibited in Barton and
Calogeracos (1995). The effects of the motion are manifested in the complicated appearance
of the out modes. This is of course exactly the same state of affairs that we have already
encountered in the case of a perfect mirror. The general expression for the in modes is given
for the sake of completeness.

Incident modes (figures 4 and 5) can now come from either direction. From the right they
read

9(+)Rω(z, t) = i

2
√
πω

{
e−iωv + RR(ω, p(u)) e−iωp(u)} (82)

9(−)Rω(z, t) = i

2
√
πω

TR(ω, v) e−iωv . (83)

Note that each term in the above equations depends either on u or v only, hence solves (2).
Similarly, a left-incident wave is written as

9(+)Lω(z, t) = i

2
√
πω

TL(ω, u) e−iωu (84)

9(−)Lω(z, t) = i

2
√
πω

{
e−iωu + RL(ω, f (v)) e−iωf (v)

}
. (85)
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e 

R  (f(v))e 

T  (u)e 

L 

-iωu

-iωu 

L 

-iωf(v)

Figure 4. In mode with exp(−iωu) wave incident from left, transmitted wave TL(u) exp(−iωu)

to the right, reflected wave RL(f (v)) exp(−iωf (v)) to the left.

-iωv

-iωp(u)

-iωv 

T  (v)e 

R  (p(u))e 

R 

R 

Figure 5. In mode with exp(−iωv) wave incident from right, transmitted wave TR(v) exp(−iωv)

to the left, reflected wave RR(p(u)) exp(−iωp(u)) to the right.

The above modes constitute the in states. The out modes correspond to waves transmitted
to either right (figure 6) or left (figure 7). Left-transmitted modes read

9̄(+)Rω(z, t) = i

2
√
πω

{
e−iωf (v) + R̄R(ω, u) e−iωu

}
(86)

9̄(−)Rω(z, t) = i

2
√
πω

T̄R(ω, f (v)) e−iωv. (87)

The right-transmitted modes have the form

9̄(+)Lω(z, t) = i

2
√
πω

T̄L(p(u)) e−iωp(u) (88)

9̄(−)Lω(z, t) = i

2
√
πω

{
e−iωp(u) + R̄L(ω, v) e−iωv

}
. (89)
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-iωp(u) e 

R  (v)e L 

-iωp(u)T  (p(u))e L 

-iωv

_ 

Figure 6. Out mode with R̄L(v) exp(−iωv) wave to the left, T̄ L(p(u)) exp(−iωp(u)) wave to the
right, back-scattered wave exp(−iωp(u)).

-iωf(v) 

R 
-iωuR  (u)e 

R T  (f(v))e -iωf(v) 

_ 

Figure 7. Out mode with T̄ R(f (v)) exp(−iωf (v)) wave to the left, R̄R(u) exp(−iωu) wave to the
right, back-scattered wave exp(−iωf (v)).

Continuity of the modes on the trajectory is guaranteed by the trajectory equation u = f (v)

(9), its inverse v = p(u) (8), and by

T = 1 + R (90)

which is true for all the above modes due to the continuity of 9 on the trajectory (indices,
overbars and arguments suppressed). The T and R for a moving mirror are nontrivial functions
of spacetime and their dependence on u or v as the case may be will be determined below. We
quote R and T for a mirror at rest as given in Barton and Calogeracos (1995):

R(ω) = − iγ

ω + iγ
T (ω) = ω

ω + iγ
. (91)

Concerning the mode expressions, note that the functional form of the left-incident modes
(84) and (85) (figure 4) is identical to that of the right-incident modes (82) and (83) (figure 5)
pertaining to a mirror moving along the trajectory −g(t) (reflected with respect to the origin).
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This is manifested by the fact that (84) and (85) are obtained from (83) and (82), respectively,
under the correspondence R � L, v � u, f � p. In this respect recall the remark after
(10). An analogous statement holds about the transmitted modes (86)–(89).

It should be noted that for a right-incident wave, relation (28) between the photon energy
ω in the lab frame and the photon energy �′ in the mirror’s rest frame holds true. For a
left-incident wave the analogue of (28) reads

ω = �′ 1 − B√
1 − B2

. (92)

The discontinuity of ∂µ9 across the trajectory is given in Calogeracos and Barton (1995)
(cf equation (II.2) or more explicitly (III.5), after the latter has been transformed to the lab
frame):

disc

[
β
∂9

∂t
+

∂9

∂x

](+)

(−)

= 2γ9
√

1 − β2 (93)

where β = dg(t)/dt is the velocity (and z = g(t) the trajectory equation). The quantity 9 on
the right-hand side of the above relation is evaluated on the trajectory.

We substitute the modes in the boundary condition (93), recall that the derivatives in (93)
also act on R and T and use (90) to get in a straightforward manner a set of four (decoupled)
differential equations, each for a set of modes.

(i) Modes transmitted to the left (equations (86) and (87)):

2

iω

dR̄R(u)

du
= −(1 + R̄R(u))

2γ
√

1 − β2

iω
+ R̄R(u)(βf

′ − β + 1 + f ′). (94)

The fact that we end up with a differential equation is a direct result of the derivatives acting
on R, T . To solve it we should express all quantities appearing on the right-hand side of (94)
in terms of u. For a specific trajectory g(t) the functions β(u), f ′(u) are calculable along
the lines of appendix A (at least in principle). Equation (94) is a linear first-order differential
equation and a general solution may be readily written down, however, it is hardly illuminating.
The study of a specific trajectory will not be pursued in the present paper.

Equation (94) for R̄R may be expressed using β rather than u as the independent variable.
To this end we write, using (15),

βf ′ − β + 1 + f ′ = 2(1 − β)

and rewrite (94) in the form

1

iω

dR̄R(u)

du
= −(1 + R̄R(u))

γ
√

1 − β2

iω
+ R̄R(u)(1 − β). (95)

We can use (19) to write the above equation in the form

a

iω(1 − β)

dR̄R(β)

dβ
= −(1 + R̄R(β))

γ
√

1 − β2

iω
+ R̄R(β)(1 − β). (96)

For a specific trajectory the acceleration a may be expressed as a function of the velocity β.
As a test of the algebra and as an illustration let us consider the case of uniform motion.

Then β is constant, f ′ is read off (24) and (94) admits the u-independent solution

R̄B
R(ω) ≡ −iγ

iγ + ω(1−B)

γ
√

1−B2

. (97)

This is the R of (91) as expected, the quantity ω(1 −B)/
√

1 − B2 being the photon frequency
in the frame of the mirror (cf (92)).
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Consider a mirror moving at uniform velocity β0 until it reaches the origin O, accelerates
from O to P and then continues at uniform velocity βP . The differential equation must then
be solved from β = β0 to β = βP with initial condition

R̄R(ω, β) = R̄
β0
R (ω) (98)

where the right-hand side of (98) is given by (97). At point P the solution of the differential
equation joins smoothly with R̄

βP

R (ω).
(ii) Modes transmitted to the right (equations (88) and (89)):

2

iω

dR̄L(v)

dv
= (1 + R̄L(v))

2γ
√

1 − β2

iω
+ R̄L(v)(βp

′ − p′ − β − 1). (99)

Now everything on the right-hand side should be expressed in terms of v. This again is in
principle straightforward once the equation of the trajectory is given.

We can repeat the analysis of (i) above. We use (14) to write

βp′ − p′ − β − 1 = −2(1 + β)

and rewrite (99) in the form

1

iω

dR̄L(v)

dv
= (1 + R̄L(v))

γ
√

1 − β2

iω
− R̄L(v)(1 + β). (100)

We use (20) to rewrite the above in the form

a

iω(1 + β)

dR̄L(β)

dβ
= (1 + R̄L(β))

γ
√

1 − β2

iω
− R̄L(β)(1 + β). (101)

Concerning the solution of (101), the reader is referred to the remarks made following
(96). In the case of uniform motion we obtain the solution in a similar way as before

R̄B
L(ω) ≡ −iγ

iγ + ω(1+B)

γ
√

1−B2

. (102)

Note that in the denominator we again have the frequency in the mirror’s rest frame. Note
also the expected difference in the sign of β between equations (97) and (102). This is due to
the fact that the transmitted wave is now in the opposite direction than before. Similarly, we
obtain the differential equations for the last two classes of modes.

(iii) Modes incident from the left (equations (84) and (85)):

2

iω

dTL(u)

du
= −TL(u)

2γ
√

1 − β2

iω
+ TL(u)(βf

′ − β + 1 + f ′) − (βf ′ − β + 1 + f ′). (103)

(iv) Modes incident from the right (equations (82) and (83)):

2

iω

dTR(v)

dv
= −TR(v)

2γ
√

1 − β2

iω
+ TR(v)(βp

′ − p′ − β − 1) − (βp′ − p′ − β − 1). (104)

Equations (103) and (104) can be cast in terms of a and β via the same manipulations
used in obtaining (96) and (101). The four uncoupled linear first-order differential
equations (94), (99), (103) and (104) may be solved (at least to some approximation) once the
form of the trajectory is specified.

After we obtain the solutions, or an approximation to them, we can use the formalism
of the preceding sections to calculate the Bogolubov amplitudes. There are some obvious
changes. The indices i, j appearing in (29) and (30) now stand for both the frequency ω and
the direction of incidence (R or L). The emission amplitude β(ωL,R, ω

′
L,R) is given by the

standard expression (32) where now the integration ranges from z = −∞ to ∞.
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The covariant model of a dispersive mirror allows estimates about the spectrum of the
emitted radiation without solving the above differential equations. The amplitude β(ω,ω′)
calculated in the previous section in the context of perfect mirrors corresponds to β(ωR, ω

′
R)

in the notation of this section. If we describe the photons in the rest frame of the mirror
then, roughly speaking, frequencies less than γ are reflected whereas those greater than γ

are transmitted (this is no more than a very crude qualitative estimate resulting from (91)).
According to the treatment in the preceding sections ω′ labels the in states where the mirror is
at rest. Thus the in frequencies that roughly matter are in the range ω′ < γ . The frequency
ω labels an out state and is connected to the frequency �′ in the mirror’s rest frame via
(28) or (92) depending on the direction of incidence, both essentially amounting to a Lorentz
transformation from one frame to another. For a receding mirror and right-incident photons
the two frequencies are connected in terms of βP (the velocity at P)

�′ = ω

√
1 + |βP |
1 − |βP | . (105)

Hence the out frequencies that matter for β(ωR, ω
′
R) are in the range

ω < γ

√
1 − |βP |
1 + |βP | . (106)

This limit is easily saturated in the case of high terminal velocity βP . This of course does not
apply to the amplitude β(ω′

L, ωL) for a mirror executing the same motion where the signs in
(105) and (106) are interchanged between numerator and denominator. Having made these
qualitative remarks, one must be warned that the role of high frequencies (compared to γ ) in
the context of dispersive mirrors should not be underestimated; experience has shown that a
finite γ does not prevent integrations from becoming ultraviolet divergent.

Note added. After the completion of this work the paper by Nicolaevici (2001) appeared where the model of Barton
and Calogeracos (1995) is used in a similar way to obtain the differential equations for the T and R amplitudes. The
author focuses on the calculation of local field quantities rather than on the calculation of Bogolubov amplitudes.
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